Merge pull request #365 from thmsdnnr/proof_CONIC_SUBROUTINES
Proof CONIC_SUBROUTINES (#197)
This commit is contained in:
		| @@ -41,7 +41,7 @@ | ||||
| #	RATHER THAN OPTIMIZING EACH FOR A PARTICULAR USE.  THEREFORE, MULTIPLE USAGE CAN BE MADE OF THE SUBROUTINES | ||||
| #	INVOLVING ANY REALISTIC SET OF CONSTRAINTS.  IT SHOULD BE NOTED THAT ONLY ONE SET OF CODING IS USED, WHETHER THE | ||||
| #	EARTH, MOON, OR ANY OTHER CELESTIAL BODY IS SPECIFIED AS THE CENTRAL BODY OF THE PROBLEM, PROVIDED ONE OBSERVES | ||||
| #	THE INHERENT SCALE CHANGE REQUIRED IN POSITION, VELOCITY, MU, AND TIME, AS OUTLINES IN MISSION PROGRAMMING | ||||
| #	THE INHERENT SCALE CHANGE REQUIRED IN POSITION, VELOCITY, MU, AND TIME, AS OUTLINED IN MISSION PROGRAMMING | ||||
| #	DEFINITION MEMO NO. 10.  THIS CAN BE ACCOMPLISHED BY SIMPLY ADDING TO THE MUTABLE AND INITIALIZING THE SUBROUTINES | ||||
| #	APPROPRIATELY. | ||||
| # | ||||
| @@ -77,8 +77,8 @@ | ||||
| #	IF A NEGATIVE TIME-OF-FLIGHT IS INPUT, THE PROGRAM WILL SOLVE FOR THE STATE WHICH WOULD BE PRODUCED BY | ||||
| #	EXTRAPOLATING THE POSITION BACKWARD IN TIME. | ||||
| # | ||||
| #	IF THE ABSOLUTE VALUE DESIRED TRANSFER TIME EXCEEDS THE ORBITAL PERIOD, THE SUBROUTINE, THROUGH A | ||||
| # 	MODULAR TECHNIQUE, WILL COMPUTE THE STATE CORRESPONDING TO THE DESIRED TIME AS USUAL. | ||||
| #	IF THE ABSOLUTE VALUE OF THE DESIRED TRANSFER TIME EXCEEDS THE ORBITAL PERIOD, THE SUBROUTINE, THROUGH A | ||||
| # 	MODULAR TECHNIQUE, WILL COMPUTE THE STATE CORRESPONDING TO THE DESIRED TIME (WHETHER POSITIVE OR NEGATIVE). | ||||
| # | ||||
| # THE RESTRICTIONS ARE -- | ||||
| #	1.	(PREVIOUS RESTRICTION ON THE NEGATIVE DESIRED TRANSFER TIME IS NOW DELETED.) | ||||
| @@ -86,7 +86,7 @@ | ||||
| #		ANY OF THESE LIMITS ARE EXCEEDED, THE RESULTING SOLUTION WILL BE MEANINGLESS. | ||||
| # | ||||
| # 	THE NUMBER OF ITERATIONS AND, THEREFORE, THE COMPUTATION SPEED IS DEPENDENT ON THE ACCURACY OF THE | ||||
| # 	GUESS, XKFPNEW.  THE AGC COMPUTATION TIME IS APPROXIMATELY .061 SECONDS FOR INITIALIZATION, .065 SECONDS FOR THE | ||||
| # 	GUESS, XKEPNEW.  THE AGC COMPUTATION TIME IS APPROXIMATELY .061 SECONDS FOR INITIALIZATION, .065 SECONDS FOR THE | ||||
| # 	FINAL COMPUTATIONS, PLUS .083 SECONDS FOR EACH ITERATION. | ||||
| # | ||||
| # REFERENCES -- | ||||
| @@ -126,7 +126,7 @@ | ||||
| #	THE INTERRUPTED JOB.  THEREFORE THE USER MUST CALL CSMCONIC OR LEMCONIC WHICH GUARANTEES NO INTERRUPTS AND WHICH | ||||
| #	ALSO CALLS KEPPREP TO COMPUTE A GUESS OF XKEPNEW. | ||||
| # | ||||
| # ABORT EXIT MODE -- | ||||
| # ABORT EXIT MODES -- | ||||
| #	NONE | ||||
| # | ||||
| # OUTPUT -- | ||||
| @@ -151,13 +151,13 @@ | ||||
| #	URRECT		+1			DP UNIT VECTOR OF INITIAL POSITION | ||||
| #	R1		+29 FOR EARTH		DP MAGNITUDE OF INITIAL POSITION IN METERS | ||||
| #			+27 FOR MOON | ||||
| # 	ALPHA		-22 FOR EARTH		DP INVERSE OF SEMI-MAJOR AXIS IN 1/METERS | ||||
| # 	ALPHA		-22 FOR EARTH		DP INVERSE OF SEMIMAJOR AXIS IN 1/METERS | ||||
| #			-20 FOR MOON | ||||
| #	TMODULO		+28			DP INTEGRAL NUMBER OF PERIODS IN CENTISECS, WHICH WAS SUBTRACTED FROM TAU. TO PRODUCE A | ||||
| #							TAU. OF LESS THAN ONE PERIOD. | ||||
| # | ||||
| # PARAMETERS OF NO USE -- | ||||
| #	DP PARAMETERS -- FPSILENT, DELX, DELT, RCNORM, XMODULO, PLUS PUSHLIST REGISTERS 0 THROUGH 39D. | ||||
| #	DP PARAMETERS -- EPSILONT, DELX, DELT, RCNORM, XMODULO, PLUS PUSHLIST REGISTERS 0 THROUGH 39D. | ||||
|  | ||||
| # Page 1266 | ||||
| # PROGRAM DESCRIPTION -- LAMBERT SUBROUTINE			DATE -- 1 SEPTEMBER 1967 | ||||
| @@ -181,7 +181,7 @@ | ||||
| #	5. THE PARAMETERS IN THE PROBLEM MUST NOT EXCEED THEIR SCALING LIMITS SPECIFIED IN THE GSOP.  IF THE | ||||
| #	   LIMITS ARE EXCEEDED, THE RESULTING SOLUTION WILL BE MEANINGLESS. | ||||
| # | ||||
| #	THE NUMBER OF ITERATIONS AND, THEREFORE, THE COMPUTATION'S SPEED IS DEPENDENT ON THE ACCURACY OF THE FIRST | ||||
| #	THE NUMBER OF ITERATIONS AND, THEREFORE, THE COMPUTATIONS SPEED IS DEPENDENT ON THE ACCURACY OF THE FIRST | ||||
| #	GUESS OF THE INDEPENDENT VARIABLE, COGA.  THE AGC COMPUTATION TIME IS APPROXIMATELY | ||||
| #	.105 SECONDS FOR INITIALIZATION, .069 SECONDS FOR FINAL COMPUTATIONS, PLUS .205 SECONDS FOR EACH ITERATION. | ||||
| # | ||||
| @@ -204,13 +204,13 @@ | ||||
| #	GUESSW		NONE			AN INTERPRETER SWITCH TO BE SET IF NO GUESS OF COGA IS AVAILABLE, CLEAR IF A GUESS OF | ||||
| # Page 1267 | ||||
| #							COGA IS TO BE USED BY LAMBERT | ||||
| #	COGA		+5			DP GUESS OF COTANGENT OF FLIGHT PATH ANGLE (MEASURED FROM VERTICAL).  THIS WILL BE | ||||
| #	COGA		+5			DP GUESS OF COTANGNT OF FLIGHT PATH ANGLE (MEASURED FROM VERTICAL).  THIS WILL BE | ||||
| #						IGNORED IF GUESSW IS SET. | ||||
| #	NORMSW		NONE			AN INTERPRETER SWITCH TO BE SET IF UN IS TO BE AN INPUT TO THE SUBROUTINE, CLEAR IF | ||||
| #							LAMBERT IS TO COMPUTE ITS OWN NORMAL (UN). | ||||
| #	UN		+1			DP UNIT NORMAL TO THE DESIRED ORBIT PLANE IN THE DIRECTION OF THE RESULTING ANGULAR | ||||
| #							MOMENTUM VECTOR.  THIS WILL BE IGNORED IF NORMSW IS CLEAR. | ||||
| #	VTARGTAG	NONE			A S.P. TAG TO BE SET TO ZERO IF LAMBERT IS TO COMPUTE THE VELOCITY OF R2VEC AS WELL AS | ||||
| #	VTARGTAG	NONE			A S.P. TAG TO BE SET TO ZERO IF LAMBERT IS TO COMPUTE THE VELOCITY AT R2VEC AS WELL AS | ||||
| #							AT R1VEC. | ||||
| # | ||||
| # SUBROUTINES CALLED -- | ||||
| @@ -224,16 +224,16 @@ | ||||
| #	L+3		SOLNSW | ||||
| #	L+4		LAMABORT | ||||
| # | ||||
| #	IF A LAMBER RESULT IS TO BE A FIRST GUESS FOR THE NEXT LAMBERT CALCULATION, COGA MUST BE PRESERVED AND | ||||
| #	IF A LAMBERT RESULT IS TO BE A FIRST GUESS FOR THE NEXT LAMBERT CALCULATION, COGA MUST BE PRESERVED AND | ||||
| #	GUESSW MUST BE CLEAR FOR EACH SUCCEEDING LAMBERT CALL. | ||||
| # | ||||
| # ABORT EXIT MODES -- | ||||
| #	IF SOLNSW WAS SET UPON EXITING, EITHER LAMBERT WAS ASKED TO COMPUTE A TRANSFER TOO NEAR 0 OR 360 DEG, OR T | ||||
| #	WAS TOO SMALL TO PRODUCE A REALISTIC TRANSFER BETWEEN R1VEC AND R2FEC.  IN EITHER CASE THE FIX MUST BE MADE | ||||
| #	WAS TOO SMALL TO PRODUCE A REALISTIC TRANSFER BETWEEN R1VEC AND R2VEC.  IN EITHER CASE THE FIX MUST BE MADE | ||||
| #	ACCORDING TO THE NEEDS OF THE PARTICULAR USER.  THE ABORT EXIT MODE MAY BE CODED AS ... | ||||
| #	LAMBERT		DLOAD	ABS		# A MEASURE OF THE PROXIMITY TO 0 OR | ||||
| #				1-CHTH		# 360 DEGREES. | ||||
| #			DSU	BWM | ||||
| #				1-CSTH		# 360 DEGREES. | ||||
| #			DSU	BMN | ||||
| #				ONEBIT | ||||
| #				CHANGER2	# CHANGE R2VEC DIRECTION SLIGHTLY. | ||||
| #			DLOAD	DAD | ||||
| @@ -266,7 +266,7 @@ | ||||
| #	1-CSTH		+2			DP 1-CSTH | ||||
| #	COGA		+5			DP COTAN OF INITIAL REQUIRED FLIGHT PATH ANGLE MEASURED FROM VERTICAL | ||||
| #	P		+4			DP RATIO OF SEMILATUS RECTUM TO INITIAL RADIUS | ||||
| #	R1A		+6			DP RATIO OF INITIAL RADIUS TO SEMI-MAJOR AXIS | ||||
| #	R1A		+6			DP RATIO OF INITIAL RADIUS TO SEMIMAJOR AXIS | ||||
| #	R1 (32D)	+29 FOR EARTH		DP INITIAL RADIUS IN METERS | ||||
| #			+27 FOR MOON | ||||
| #	UR1		+1			DP UNIT VECTOR OF R1VEC | ||||
| @@ -292,7 +292,7 @@ | ||||
| # THE RESTRICTIONS ARE -- | ||||
| #	1. THE ANGLE BETWEEN ANY POSITION VECTOR AND ITS VELOCITY VECTOR MUST BE GREATER THAN 1 DEGREE 47.5 MINUTES | ||||
| #	   AND LESS THAN 178 DEGREES 12.5 MINUTES. | ||||
| #	2. THE PARAMETERS IN THE PROBLEM MUST NOT EXCEED THEIR SCALING LIMITS SPECIFIED IN THE GSCP.  IF THE LIMITS | ||||
| #	2. THE PARAMETERS IN THE PROBLEM MUST NOT EXCEED THEIR SCALING LIMITS SPECIFIED IN THE GSOP.  IF THE LIMITS | ||||
| #	   ARE EXCEEDED, THE RESULTING SOLUTION WILL BE MEANINGLESS. | ||||
| # | ||||
| #	THE AGC COMPUTATION TIME IS APPROXIMATELY .292 SECONDS. | ||||
| @@ -308,7 +308,7 @@ | ||||
| #			+27 FOR MOON | ||||
| #	VVEC		+7 FOR EARTH		DP INITIAL VELOCITY VECTOR IN METERS/CENTISECOND | ||||
| #			+5 FOR MOON | ||||
| #	SNTH		+1		`	DP SINE OF THE TRUE-ANOMALY-DIFFERENCE THROUGH WHICH THE STATE IS TO BE UPDATED | ||||
| #	SNTH		+1			DP SINE OF TRUE-ANOMALY-DIFFERENCE THROUGH WHICH THE STATE IS TO BE UPDATED | ||||
| #	CSTH		+1			DP COSINE OF THE ANGLE | ||||
| #	RVSW		NONE			AN INTERPRETIVE SWITCH TO BE SET IF ONLY TIME IS TO BE AN OUTPUT, CLEAR IF THE NEW STATE | ||||
| #							IS TO BE COMPUTED ALSO. | ||||
| @@ -333,7 +333,7 @@ | ||||
| #					# THE INITIAL VELOCITY VECTOR IN MPAC. | ||||
| #	L+3	STOVL	NEWVVEC | ||||
| #	L+4	STADR | ||||
| #	L+5	STORE	NEWRVEC		# NEWVVEC AND NEWRVEC ARE SYMBOLIC REPRESENTATIONS OF THE USER'S LOCATIONS. | ||||
| #	L+5	STORE	NEWRVEC		# NEWVVEC AND NEWRVEC ARE SYMBOLIC REPRESENTATIONS OF THE USERS LOCATIONS. | ||||
| #	L+6	...			# CONTINUE. | ||||
| # | ||||
| # ABORT EXIT MODES -- | ||||
| @@ -344,7 +344,7 @@ | ||||
| #			 SCALE FACTOR | ||||
| #	VARIABLE	IN POWERS OF 2		DESCRIPTION AND REMARKS | ||||
| #	--------	--------------		----------------------- | ||||
| #	T(30D)		+28			DP TRANSFER TIME IN CENTISECONDS | ||||
| #	T (30D)		+28			DP TRANSFER TIME IN CENTISECONDS | ||||
| #	INFINFLG	NONE			AN INTERPRETIVE SWITCH WHICH IS SET IF THE TRANSFER ANGLE REQUIRES CLOSURE THROUGH | ||||
| #							INFINITY (NO SOLUTION), CLEAR IF A PHYSICAL SOLUTION IS POSSIBLE. | ||||
| #	COGAFLAG	NONE			AN INTERPRETIVE SWITCH WHICH IS SET IF RESTRICTION 1 HAS BEEN VIOLATED (NO SOLUTION), | ||||
| @@ -366,7 +366,7 @@ | ||||
| #	--------	--------------		----------------------- | ||||
| #	R1 (32D)	+29 FOR EARTH		DP MAGNITUDE OF INITIAL POSITION VECTOR, RVEC, IN METERS | ||||
| #			+27 FOR MOON | ||||
| #	R1A		+6			DP RATIO OF R1 TO SEMI-MAJOR AXIS (NEG. FOR HYPERBOLIC TRAJECTORIES) | ||||
| #	R1A		+6			DP RATIO OF R1 TO SEMIMAJOR AXIS (NEG. FOR HYPERBOLIC TRAJECTORIES) | ||||
| #	P		+4			DP RATIO OF SEMILATUS RECTUM TO R1 | ||||
| #	COGA		+5			DP COTAN OF ANGLE BETWEEN RVEC AND VVEC | ||||
| #	UR1		+1			DP UNIT VECTOR OF RVEC | ||||
| @@ -443,7 +443,7 @@ | ||||
| #					# THE INITIAL VELOCITY VECTOR IN MPAC. | ||||
| #	L+3	STOVL	NEWVVEC | ||||
| #	L+4	STADR | ||||
| #	L+5	STORE	NEWRVEC		# NEWVVEC AND NEWRVEC ARE SYMBOLIC REPRESENTATIONS OF THE USER'S LOCATIONS. | ||||
| #	L+5	STORE	NEWRVEC		# NEWVVEC AND NEWRVEC ARE SYMBOLIC REPRESENTATIONS OF THE USERS LOCATIONS. | ||||
| #	L+6	...			# CONTINUE | ||||
| # | ||||
| # ABORT EXIT MODES -- | ||||
| @@ -483,7 +483,7 @@ | ||||
| #	--------	--------------		----------------------- | ||||
| #	R1 (32D)	+29 FOR EARTH		DP MAGNITUDE OF INITIAL POSITION VECTOR, RVEC, IN METERS | ||||
| #			+27 FOR MOON | ||||
| #	R1A		+6			DP RATIO OF R1 TO SEMI-MAJOR AXIS (NEG. FOR HYPERBOLIC TRAJECTORIES) | ||||
| #	R1A		+6			DP RATIO OF R1 TO SEMIMAJOR AXIS (NEG. FOR HYPERBOLIC TRAJECTORIES) | ||||
| #	P		+4			DP RATIO OF SEMILATUS RECTUM TO R1 | ||||
| #	COGA		+5			DP COTAN OF ANGLE BETWEEN RVEC AND VVEC | ||||
| #	UR1		+1			DP UNIT VECTOR OF RVEC | ||||
| @@ -493,7 +493,7 @@ | ||||
| #	SNTH		+1			DP SINE OF TRUE ANOMALY DIFFERENCE. | ||||
| # | ||||
| # 	PARAMETERS OF NO USE -- | ||||
| #		SP PARAMETERS -- RTNTT, GEOMSGN, RTNPRM, MAGVEC2*R2 (DP), PLUS PUSHLIST LOCATIONS 0-11D, 14D-21D, 24D-39D, 41D | ||||
| #		SP PARAMETERS -- RTNTT, GEOMSGN, RTNPRM, MAGVEC2=R2 (DP), PLUS PUSHLIST LOCATIONS 0-11D, 14D-21D, 24D-39D, 41D | ||||
| #		ADDITIONAL INTERPRETIVE SWITCHES USED -- NORMSW, 360SW | ||||
| # | ||||
|  | ||||
| @@ -541,7 +541,7 @@ | ||||
| #	L+1		APSIDES		# RETURNS WITH PL AT 0, RADIUS OF APOCENTER IN MPAC AND RADIUS OF PERICENTER IN 0D | ||||
| #	L+2	STODL	APOAPSE | ||||
| #	L+3		0D | ||||
| #	L+4	STORE	PERIAPSE	# APOAPSE AND PERIAPSE ARE SYMBOLIC REPRESENTATIONS OF THE USER'S LOCATIONS | ||||
| #	L+4	STORE	PERIAPSE	# APOAPSE AND PERIAPSE ARE SYMBOLIC REPRESENTATIONS OF THE USERS LOCATIONS | ||||
| #	L+5	...			# CONTINUE | ||||
| # | ||||
| # OUTPUT -- | ||||
| @@ -563,7 +563,7 @@ | ||||
| #	--------	--------------		----------------------- | ||||
| #	R1 (32D)	+29 FOR EARTH		DP MAGNITUDE OF INITIAL POSITION VECTOR, RVEC, IN METERS | ||||
| #			+27 FOR MOON | ||||
| #	R1A		+6			DP RATIO OF R1 TO SEMI-MAJOR AXIS (NEG. FOR HYPERBOLIC TRAJECTORIES) | ||||
| #	R1A		+6			DP RATIO OF R1 TO SEMIMAJOR AXIS (NEG. FOR HYPERBOLIC TRAJECTORIES) | ||||
| #	P		+4			DP RATIO OF SEMILATUS RECTUM TO R1 | ||||
| #	COGA		+5			DP COTAN OF ANGLE BETWEEN RVEC AND VVEC | ||||
| #	UR1		+1			DP UNIT VECTOR OF RVEC | ||||
| @@ -810,7 +810,7 @@ KEPCONVG	DLOAD	SR4R | ||||
| 			T | ||||
| 		SL1	VXSC | ||||
| 			VRECT | ||||
| 		VSL1	VAD | ||||
| 		VSL1	VAD		#				PL AT 0 | ||||
| 		VSL4 | ||||
| 		STORE	RCV		# RCV (+29 OR +27) | ||||
|  | ||||
| @@ -975,7 +975,7 @@ MODNGDEL	DLOAD	DSU		# TRIAL DELINDEP WOULD EXCEED MIN BOUND | ||||
| FIRSTIME	DLOAD	DMP | ||||
| 			MIN | ||||
| 			TWEEKIT		# DLOAD TWEEKIT(40D) SENSITIVE TO CHANGE. | ||||
| 		PDDL	DMP		# S2(41D) SHOULDN'T CONTAIN HI ORDER ONES | ||||
| 		PDDL	DMP		# S2(41D) SHOULDNT CONTAIN HI ORDER ONES | ||||
| # Page 1286 | ||||
| 			MAX | ||||
| 			TWEEKIT | ||||
| @@ -1060,8 +1060,8 @@ LAMENTER	NORM | ||||
| 			R2 | ||||
| 		BDSU | ||||
| 			D1/256 | ||||
| 		VXSC	VAD | ||||
| 			VVEC		#				PL AT 6 | ||||
| 		VXSC	VAD		#				PL AT 6 | ||||
| 			VVEC | ||||
| 		VSL8	RVQ | ||||
|  | ||||
| # Page 1288 | ||||
| @@ -1118,8 +1118,8 @@ TIMETHET	STQ	SETPD		#				PL AT 0 | ||||
| 			VVEC | ||||
| 		CALL | ||||
| 			PARAM | ||||
| 		BOV	CALL | ||||
| 			COGAOVFL	#				PL AT 0 | ||||
| 		BOV	CALL		#				PL AT 0 | ||||
| 			COGAOVFL | ||||
| 			GETX | ||||
| COMMNOUT	DLOAD	BON | ||||
| 			XI | ||||
| @@ -1349,15 +1349,15 @@ INVRSEQN	DLOAD	SQRT | ||||
| 			R1A | ||||
| 		DMP	SR4 | ||||
| 			34D | ||||
| 		TAD | ||||
| 		BMN	SQRT		#				PL AT 4 | ||||
| 		TAD			#				PL AT 4 | ||||
| 		BMN	SQRT | ||||
| 			INFINITY | ||||
| 		DAD			#				PL AT 2 | ||||
| 		TIX,2	NORM | ||||
| 			1/WLOOP | ||||
| 			X1 | ||||
| 		BDDV | ||||
| 		SLR*	GOTO		#				PL AT 0 | ||||
| 		BDDV			#				PL AT 0 | ||||
| 		SLR*	GOTO | ||||
| 			0 	-7,1 | ||||
| 			POLYCOEF | ||||
|  | ||||
| @@ -1549,8 +1549,8 @@ LOENERGY	SETPD	DLOAD		# LOW ENERGY TRAJECTORY RESULTED | ||||
|  | ||||
| SUFFCHEK	DLOAD	ABS | ||||
| 			TERRLAMB | ||||
| 		PDDL	DMP | ||||
| 			TDESIRED	#				PL AT 2D | ||||
| 		PDDL	DMP		#				PL AT 2D | ||||
| 			TDESIRED | ||||
| 			D1/4 | ||||
| 		DAD	DSU		#				PL AT 0D | ||||
| 			ONEBIT | ||||
| @@ -1598,8 +1598,8 @@ INITV		DLOAD	NORM | ||||
| 		PDDL			# XCH WITH 0D			PL AT 0,6 | ||||
| 		VXSC	VSL1 | ||||
| 			UN | ||||
| 		VXV	VAD | ||||
| 			UR1		#				PL AT 0 | ||||
| 		VXV	VAD		#				PL AT 0 | ||||
| 			UR1 | ||||
| 		VSL1	CLEAR | ||||
| 			SOLNSW | ||||
| 		STORE	VVEC | ||||
| @@ -1626,8 +1626,8 @@ TIMERAD		STQ	SETPD		#				PL AT 0 | ||||
| 			VVEC | ||||
| 		CALL | ||||
| 			PARAM | ||||
| 		BOV	DLOAD | ||||
| 			COGAOVFL	#				PL AT 0 | ||||
| 		BOV	DLOAD		#				PL AT 0 | ||||
| 			COGAOVFL | ||||
| 			D1/32 | ||||
| 		DSU	DMP | ||||
| 			R1A | ||||
| @@ -1645,7 +1645,7 @@ TIMERAD		STQ	SETPD		#				PL AT 0 | ||||
| 		BOV | ||||
| 			CIRCULAR | ||||
| 		PDDL	NORM		# 0D=UNIT(ECC) (+3)		PL AT 6 | ||||
| 			RDESIRED	# 35D=ECC (+3) | ||||
| 			RDESIRED	# 36D=ECC (+3) | ||||
| 			X1 | ||||
| 		PDDL	DMP		#				PL AT 8 | ||||
| 			R1 | ||||
| @@ -1826,7 +1826,7 @@ KEPC2		EQUALS	36D | ||||
| # TDESIRED	ERASE	+1 | ||||
| # GEOMSGN	ERASE	+0 | ||||
| # GUESSW			# 0 IF COGA GUESS AVAILABLE, 1 IF NOT | ||||
| # COGA		ERASE	+1	# INPUT ONLY IF GUESS IS ZERO. | ||||
| # COGA		ERASE	+1	# INPUT ONLY IF GUESSW IS ZERO. | ||||
| # NORMSW			# 0 IF UN TO BE COMPUTED, 1 IF UN INPUT | ||||
| # UN		ERASE	+5	# ONLY USED IF NORMSW IS 1 | ||||
| # VTARGTAG	ERASE	+0 | ||||
| @@ -1865,7 +1865,7 @@ DCOGA		EQUALS	12D | ||||
| # T		EQUALS	30D | ||||
| # KEPC1		EQUALS	34D | ||||
| # KEPC2		EQUALS	36D | ||||
| # SLOPSW | ||||
| # SLOPESW | ||||
| # SOLNSW | ||||
|  | ||||
| # OTHERS -- | ||||
| @@ -1885,7 +1885,7 @@ DCOGA		EQUALS	12D | ||||
| COSF		EQUALS	24D | ||||
|  | ||||
| # RTNPRM	ERASE	+0 | ||||
| # SCNRDOT	ERASE	+0 | ||||
| # SGNRDOT	ERASE	+0 | ||||
| # RDESIRED	ERASE	+1 | ||||
|  | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user